Code: 19EE4801A

IV B.Tech - II Semester - Regular Examinations - MAY 2023

ARTIFICIAL INTELLIGENCE APPLICATION TO POWER SYSTEMS

(ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

PART - A

		BL	CO
1. a)	What is the role of fuzzy inference system?	L2	CO1
1. b)	Define the term Artificial Neural Network (ANN).	L2	CO1
1. c)	What is the purpose of elitism operator in Genetic Algorithm (GA)?	L2	CO1
1. d)	Write particle velocity calculation equation in PSO.	L2	CO1
1. e)	Define load forecasting.	L2	CO1

PART – B

			BL	СО	Max. Marks	
	UNIT-I					
2	a)	Explain any three types of membership	L2	CO1	6 M	
		function used in Fuzzy Logic System				
		with a suitable sketch and mathematical				
		equation.				
	b)	Two fuzzy sets are given as	L4	CO2	6 M	
		$A = \{(x1, 0.1), (x2, 0.2), (x3, 0.3),$				
		(x4, 0.4)				
		$B = \{(x1, 0.5), (x2, 0.7), (x3, 0.8),$				
		(x4, 0.9)				
		Compute the following				
		i) Algebraic product of A and B				
		ii) Union of A and B				
		iii) Multiplication of Fuzzy set A by				
		crisp number 0.2				
		iv) Bounded sum of A and B				
	OR					
3	a)	Discuss any two defuzzification methods	L2	CO1	6 M	
		in brief which can be used in fuzzy logic.				
	b)	Explain Fuzzy rule base by considering	L4	CO2	6 M	
		suitable example.				
	UNIT-II					
4	a)	Explain supervised learning with suitable	L4	CO2	6 M	
		example.				

5	a)	Discuss its training algorithm. OR			
5	a)	OR			
5	a)				
		Classify the Artificial neural networks	L4	CO2	6 M
		based on their architecture and explain			
		them in detail.			
	b)	Discuss the following in brief	L2	CO1	6 M
		i)Modular network			
		ii)Neural network controller			
		UNIT-III			
6	a)	Explain clearly in what way Rank	L4	CO3	6 M
		selection is different from Roulette wheel			
		selection.			
	b)	Discuss the concept of Multi Point	L2	CO3	6 M
		Crossover with a suitable example.			
		OR	.		
7	a)	Illustrate the importance of mutation	L4	CO3	6 M
		operator and also explain how it can			
		influence the convergence characteristics			
		of Genetic Algorithm (GA).	_		
	b)	What is fitness function and how it is	L4	CO3	6 M
		selected? Also explain is genetic			
		algorithm suitable for maximization or			
		minimization problem.			
	UNIT-IV				
8	a)	Discuss Particle Swarm Optimization	L2	CO1	6 M
		(PSO) algorithm implementation steps			
		with suitable equations.			

		T	1	1		
	b)	What do you mean by Pbest and Gbest in	L4	CO3	6 M	
		PSO explain in detail.				
		OR				
9	a)	In what way PSO is better than GA?	L2	CO1	6 M	
		Explain in detail.				
	b)	Articulate how PSO method can be used	L3	CO3	6 M	
		to improve the performance in power				
		systems.				
		UNIT-V				
10	a)	Illustrate that Load flow study	L3	CO4	6 M	
		application can be addressed by Artificial				
		Intelligence (AI) techniques.				
	b)	How can an Artificial Neural Network be	L3	CO4	6 M	
		applied for speed control of ac motor?				
		Explain in detail.				
	OR					
11	a)	How can an Artificial Neural Network be	L3	CO4	6 M	
		applied for reactive power control?				
		Explain in detail.				
	b)	Illustrate in detail how fuzzy logic can be	L3	CO4	6 M	
		employed in Load Frequency Control				
		application?				